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Abstract
The analytical solution of the Mean Spherical Approximation for the case of equal
size ious and different size solvent is reexamined using only two paraueters : a polar-

ization paraweter A and a screening parawmeter I'. We show that the ion dipole cross
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energy parameter, which in previous work was obtained solving a cubic equation, can
be obtained from a linear algebraic equation. Therefore, the inverse problew of cal-
culating the reduced charge parameter dy and the reduced dipole parameter d; from
A and T is reduced to a system of two equations: a cubic for dy, aud a liuear for d;.

Simplei' expressious for the thermodynamic parameters are also obtained.
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1 Introduction

Considerable advances have been made over tha last thirty years in the statistical me-
chamnical description of electrolyte solutions in wolecular solvents. This work has been carried
out using different approaches: computef simulations,!*? accurate integral equations, such as
the hypernetted chain equation,® which were applied to this case by Patey and coworkers*®
and simple analytical theories, based on the mean spherical approximation (MSA).® The last
approach is attractive for chemwists examining the thermodynamic properties of electrolyte
solutions not only because the model gives rather simple analytical results but also because
it shares with the Debye Hiickel theory the remarkable simple description in terms of a single
screening paraweter for any arbitrary mixture of electrolytes, and has the added bouus of
satisfying the large charge, large density limits of Ousager.”® In the present work we cousider
a wixture of a salt of equal size hard sphere ions, and a solveut which is represented by a
hard sphere of different size with a permanent point dipole. Early work at the nou-primitive
level®> 1V was restricted , for technical reasons, to the case of ions and solvent of equal diam-
eter. The extension of the analytical result to wmixtures of arbitrary size ions and solvents
is considerably more complex!’* but the remarkable fact that the excess ionic properties
depend ou a single scaling, Debye-like parameter is still retained by this approximation. The
equations for the most general case appear to be rather complex, but the semirestricted case
of equal size ions of diameter o; and a different size dipole of diawmeter o, is both interesting
and tractable. In recent years!® it has becowe apparent that the underlying structure of the
MSA cousists of a number of scaling paramneters which is equal to the number of independent
interaction paraweters of the problem. For example, for the ion-dipole mixture there are
only two interaction parameters, the charge and the dipole mowment, and correspoudingly.
there will be ouly two scaling parameters, I', for the charges, and A for the dipoles. For the
primitive model of ionic solutions in the semirestricted case!®the parametes I' is determined

from the equation

4re? pizt 2
3 = 1
kayT ‘ 1 + FU,‘ 4F ( )

where tho jonic charge is z,e and number density p; = N;/V, where A, is the nuwber of jons
and V is the volume of the system. The temperature is 7 and Boltzmann’s constant is kg.

For the case of ouly one




ion diameter o; the screeniug parameter T is related to the Debye screening parameter

. dme? 2
= ewkuTZ-:p'Z" (@)
by
(1+2l0)* = (1 + 2x0) (3)

For a system of spheres of diaweter o, and a permanent dipole mwoment u, the MSA result

can be expressed in ters of a single paraweter A . Following Wertheim,!” we have

_ MM +2)* 1

2 — c—
=02 a
where
s dwp,ul -
d: = :
2 3kuT (O)

and p, is the solveut number deusity. Furthermore, the MSA dielectric coustant ey of the
solvent is given by
A4(A+1)*

Ew = —16-— (6)

As has been often doue in the literature, the parameter A can be cowputed directly from
the dielectric constant ey using the above cubic equation. This parametrization defines an

effective polarization parameter.

This paper is the continuation of previous work of Blum and Wei'? and of Blum
and Fawcett.?? The notation of Blum and Wei will be used throughout. We show that for
the sewmirestricted case of the ion-dipole wodel of ionic solutions an ion-dipole interaction
parameter b, is obtained from a linear equation whic is also a fuction of the reduced charge
dy. In our previous work'®'? this parameter was obtained as a solution of a cubic equation
with coefficients that depend on T, the dielectric constant ey and A. When o, — 0 we
recover the primitive model MSA equations, and the hydration thermodynamics is that of
the continuum mwodel as described by the Born equation. In the next section we discuss the
new form of the MSA equations for the sewmirestricted case of equal size ions and a different
size hard dipole. The thermodynawmics for this system is derived in the final section using

the expressions of Vericat et al.!’® and of Blum et al.'*




2 Theory

We sumiarize the results of previous work.!'1%1% We use the invariant expansion
formalist,?’ in which the total pair correlation k(12) is expauded in terms of rotational

invariants
(12) — huuu(,u)_*_huu(, )<I>°“ +hlUl( )q)ll)l +h“°( )<i>”°+iz“2(r12)<i>lu (7)

where iz""“(ru) is the coefficient of the invariant expansion, which depend ouly on the
distance r;; between spheres 1 and 2. The rotational invariants dmnt depend ouly ou the

mutual orientations of the molecules. For the present case the relevaut correlation functious

® ion-ion:
his(r) = (1/2) [RE(r) - B32(r)] (8)
e ion-dipole:
hin(r) = (1/2) [RS(r) = A2 (r)] (& - ) (9)
. dipole-dipole:‘
han(r) = —V[_hf.ﬁ’( Vb - b

+ \/Ehlll V[3(F -+ o) (F - fr2) — fi1 - faa) (10)

where i is the unit vector in the direction of x. The solution of the MSA is given in terius

of the ’energy’ parameters

® jon-jon:

by = 27p; / " drhi(r)ro; (11)
0
b = 2my/ ﬁé”—' /u % drhin(r)0:0s (12)
9 oo pn2 )
b, = 37rp,\/—1—;/0 dr r(r),,g (13)

e jon-dipole:

e dipole-dipole:




which, as will be shown below are proportional to the ion-ion, iou-dipole and dipole-dipole
excess internal energy.'® In the MSA they are functious of the ion charge and the solvent

dipole moment, through the parameters

. 4me? . .
dy = maf%:/’ﬂj (14)
aud
. 4dmp,ul -
d’ = 2 1
2 3kBT ( O)

These parameters are required to satisfy the following equations'?

it al = d (16)
dod; = a1k — a2l — Kn] (17)
Kiy+[1-Ku]* =y +d; (18)
Since
b
K = (a./ag)i[l + a A (19)
and
1
1- I{u = K[IBJ - azblA(U./20',')] (20)
with
A = (1/2)(1 + b) + Bs(0,/60:) (21)
can be rearranged to
@+ a} = d? (22)
GO _ 0,8, = doAA (23)
20‘.‘
bo,]?
] 4 2= s+ 2 (24)
where we have used the definitions
a = 2D‘ [A 20Dy (23)
= A/2+D ﬂ o (26)
a2 - ﬂ 2D1 [ / + ¥ ] -
bio, -
2
[ﬂo(1+bo) 125 ] (27)
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and

which can also be written!?

bIO',

A= dz—duA*

where

with

Bl-——

Also

2@?1"7-’
D=1+B5B,

b bi(A+2)*

43 — 36
Bs=1-b:/6
Bs=1+b/3

Brz=1+b,/12

It will turn out convenient to use the parameter

Then

Yo

h =

Futhermore we have the dielectrc constan

Cw

Bs
A==
Be
A-1
bi=6373
A
=332
3
ﬂ“_/\+2
_ B MrA+2)
N
B _,40+2)

B, T3 +1)
tl7

v N+

yé 16

(42)




As has been previously shown'? %14 Eq.(23) can be replaced by

uaybyo,

20’.‘

+ a1 Bs = doApr (43)

which together with Eqgs.(22) and (24) form a system of three equations for the three un-
kuowus by, by, b,. However these equations are still complex. A much simpler set of equations

is obtained when we use the proper scaling lengths.!®!7 We defiue T through the relation

_ —FU,' bf 1 ,360’, _ —'FU.' 231A ‘
b= 1T, T [1+ra.- 30.-]_1+I‘0.' D (44)
. Boc
by — By(1 + F2
FO’.‘ = - l( B J:' ) (45)
(14 by — Bufece)
and A from
Bs
A== 4
. Be (40)
After sowe long but straightforward algebra we get
2 ;['o;
a; = 5r05(1 + FO.') = ﬂbD”"y (47)
_ b1 _ bll‘o‘
“=TU3AG T 2Dk 8)
where now
_ GD
D= ai+Toy (49)
where we have defined the convenient paraweter (;
To; To; -
Ci_l+Fa;+%_l+Fai+é (30)
where
O, -
& = Yo, (51)
Psa, 1 Bs0s
= = 2
A= (1/2) [1+bu+ 30‘] (D/2)[1+rm + 305] (52)
and ,
bt bi(A + 2)- -
= —— = —_— 3
D=1+ T (53)
Furthermore we get for Eq.(29)
T b1 2 + PO’./C.'
=d; — dy(— 54
A=dy U(a.-)(12ﬂ5)( 1+ Tlo; ) (54)
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Also

di = C—: [c2 + 8] (53)
1 - K = (yo/D) [1 + By(&/()To, (1 +(1+ ra)ib;’)] (56)
Ky = %lﬂé(l +To;) (1 + F“‘f"‘a’) (57)

With this the boundary coudition
hdody = 2 [d(ou /) + (MG + GE)] (58)

the MSA equation (43 )reduces to
2Toi(1 + Loy (1 — (D = 1)(&:/¢)) = d‘fz (39)

together with the cubic equation for the ion-dipole paraweter b,
D+ D—-1]=ew[t — (D -1)&])° (60)

These can be written in a wore convenient form using Eq.(59)

2To,(1+ To) [1 ~ Ba(€ /)] = d—%’g_gﬁ (61
Eq.(60) is a cubic equation in B,
(1+By)* [C."‘ + 31] = ew [ — Bi&i]* (62)

Eliminating (14 B;)? between these two equations, we get a linear expression in By ( in place
of the cubic!?), which is easily solved to yield

1w

—_ 2
Bi=¢ vi + &

(63)

This is one of our main results: The parawmeter by is now explicitly obtained as a function of

the other parameters of the problem. where

~_ 2To,(1 +Tay)

vi = do Jew (64)
Furthermore , ,
148, = —(=vi = &G = G+ vi)) (65)

vi + &G

9




_ G +&G)

G+B = s
1—(&/G)B1 = _v_il_:f_éciz

(1 +&4)

2 _ 2 __ 21 T S
D = [1+Bl] = éwl/. V,-+£,'C,'

so that from eq.(61) we get

2loi(1 + Pa,-)y"i.;:é‘-cﬁ = do/\/ow |- -V — f;Co_:éC; + vi(i?

Substituting
view(l + &G)(vi + &G) = (—vi — &G = ¢ + wi())?

We have that
(14 &)(1 +Toi)lo;

L+éG= 1+ Toi +1/&

vi+&iGi =

T'o; : 2(1+ra.-)(1+ra;+1/£i)]
1+ o +1/& ) dov/ew

ey oaa_ (1+&)( +Toi)lo; 2(1+2T0; +1/&)
vi + &6 + C'; VlCc‘z = (1 +To, + 1/&.)2 [1 + dU\/fwfi }
Finally, after some leuéthb' algebra

do(1 + &)(2 + 26 + 4T o6 + dov/ewE?)?
= 4T0;\/ew (1 + Toi&i)(1 + & + Toiti)?
(2 + 2T0; + 26; + 4T0:&i + 2T0 6 + dov/ewE?)

which can be written in the form

do +2(1 + 1/& + 2T0.) /(Vew&) |

do (1+1/& +Toi)
_ (1—+£.q'_€'). o 2 . o, £/ €
= 40, 17 [do+2(1+T J(1+1/& +To) /(v w)]

This is a cubic equation for the parameter dy.
doldv + Cl]2 = ¢y(dy + ¢s)
with

10
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PO‘,’
Vewé,
Cy = ——-——(Fa‘)3 (o T
2 46."(1+£.~)(1+P &) (77)
rai(l'f‘FU.‘)

Cuf.\/éw

A second equation is laboriously obtained from Eq.(18)

ﬁ [1 +(D/2)M; [ L 4 ﬂ“”’”

C1=2

(1+1/G) (76

C3=2

D? 14 To; 30;
wos \ QHToA+TalZe) (79)
2B60',' ! 1 + l/f. + I‘O,' - yl 2
where
21‘(7,'(1 + FUg) dy
M; = o7 Y~ (80)
Yo = Z—j' (81)
5

From these two equations the inverse problem can be solved explicitly, that is, to compute
the parameters dy and d; from I' and A\. When the solvent diameter o, goes to zero we

recover the correct primitive wodel result

dy

i W)= — 2
2loi(1 4+ Toy) - (82)
which is equal to the primitive model MSA Eq.(3) in the form

2T'o(1 + T'o) = ko (83)

with the MSA Wertheim dielectric constant ey .

3 Thermodynamics

The excess internal energy for the setuirestricted case of equal size ions and a different
size solvent is similar to the completely resticted case of all equal size spheres. The therno-
dynamic relations for the completely restricted case were first derived by Vericat and Blum.'®

The generalization of the thermodynamic expressions to the completely general case and the

11




semiresticted case were obtained later by Wei and Blum.'? We use the reduced quantities of

the second work. The internal energy is

03E/(VksT) = [d‘bo 2 (a )dud,bl - 2( ) d‘b,] (84)

the Helinholtz free energy is obtained using the method of Haye and Stell??
oSA/(VEsT) = 1; (2d2by — 2dudaby — J') (85)

’r_ 112 ﬁ ﬁ /12 fl 3 r 12 "2
r=i@d+ 1+ (2)] (2) @t + (2) el + 207 (86)

It will be convenient to write the Helinholtz free energy as the sum of a internal energy

and an entropy term

A/(VksT) = E/(VksT) — S/(Vks) (87)
where
— 035/(Vky) = 1; [ d2by + 4 ( ) dodyby +6 ( ) d2b, — J] (88)

Using the results of Wei and Blum,!* Eqs.(16-20) an
1-52/24 2(/\ -1)(A+3)

¢ =y~ Gy (89)

Qi = —o1 ~2+ B/ Dy = ~ [T + Bi] (90)
Qia= ﬂ,fD ——=[Bs + 61(3A — 2Dy)]

Qiu= b‘g;(l + I'o;)(1 + Toi&i) (91)

Qua = 2 [(I/A) (B;f - (2"0) bray(3A — 21),-)) - 1]

- [%] [X‘ —1-B, (1 - (FZ;)Z)] (92)

After sowe lenghty calculations we get

— §/(Vky) = [I“ X ([1 + “—’:W‘—“—H - 3)] +T'/0} (93)

where the coefficients T is a second order polynomwial in the vanable

B, M;

B _ (94)
DI~ 21+ To))(1+ (1 +Ton)E)

12




where M, has been defined in ¢q.(80). When this variable is zero then the system behaves
like a suin of a primitive wodel electrolyte and a dipolar fluid. Our expressions reproduce
the known results**% for the ionic part. For the dipolar part we get a new and simple

expression, which, however, is in full agreement with the result of Rushbrooke et al.?®

We have
= (1/127)[Ty + T}] (95)
with
=Tw+ To1 + T (96)

T = — [%] 4(Toi)*(1 + Toy) [2 —1/¢} +B1+ (1/Tai (1 + B /) (1 +(1+ FU-')%’Z')]

(97)
Ty =16 [%] TFoi(1 + Toy) [1 + —lc— +Toi(1 + Bl/Cf) (1 +(1+T Jﬂbda)] (98)

g s 2 2 2
Tb'l — (;) Gb'g[dz + yl - yU]

. LBecn )
CAGRE] ((1 AL ﬂ(l + ) ) +yin(2D + Bm]} (99)
where
% = =1+ (&/G)To: (1 +(1+Te )ﬂ"a')

Furthermore
Ty=T+Tn+Tsr (100)
Ty = 4[ ] (1 - T?o})[2T%? + By(1 + T*0?)] (101)
Th=4 [1 + (U—)] (a—) 1—)1;] A¥(1 4+ Ta,)*(1 + Foi)? (102)

To=(2) Q" - 404 - 1]

=-4(Z_‘)' ][A‘ (Toi/¢)] [0 = )1 +D) - By (1= (Toi/C)Y)]  (103)

The excess pressure can also be computed.?! The expression is'*

P/ksT = S/VksT (104)

13




Then,
G=EFE (105)

still holds.
The thermodynamic expressions for the infinite dilution limit!! was discussed by Chan
and colaborators,?” and in a more comprehensive way by Garisto et al.?® Our expressions

agree with these works in that limit. A more detailed discussion of the applications of these

results will be published in future work.
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